3. Inverse of M
The inverse of M can be derived using the Sherman-Morrison-Woodbury formula:
\[
M^{-1} = (I + XX')^{-1} = I - X(I + X'X)^{-1}X'
\]
Proof:
- Let M⁻¹ = I - X(I + X'X)⁻¹X'
- Multiply M and M⁻¹:
\[
\begin{aligned}
MM^{-1} &= (I + XX')(I - X(I + X'X)^{-1}X') \\
&= I - X(I + X'X)^{-1}X' + XX' - XX'X(I + X'X)^{-1}X' \\
&= I - X(I + X'X)^{-1}X' + X(I - (I + X'X)(I + X'X)^{-1})X' \\
&= I - X(I + X'X)^{-1}X' + X((I + X'X)(I + X'X)^{-1} - I)X' \\
&= I - X(I + X'X)^{-1}X' + X(I - I)X' = I
\end{aligned}
\]