Part 1: Deriving the Variance of OLS Estimator under Homoscedasticity
Consider the linear regression model:
\[
\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}
\]
where \(\mathbf{y}\) is an \(n \times 1\) vector of observations, \(\mathbf{X}\) is an \(n \times k\) matrix of regressors, \(\boldsymbol{\beta}\) is a \(k \times 1\) vector of coefficients, and \(\boldsymbol{\varepsilon}\) is an \(n \times 1\) vector of error terms.
The OLS estimator is given by:
\[
\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}
\]
Substituting \(\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}\):
\[
\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}) = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}
\]
To find the variance, we focus on the random part: \((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}\)
Under homoscedasticity, we assume:
\[
\mathbb{E}[\boldsymbol{\varepsilon}] = \mathbf{0} \quad \text{and} \quad \mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'] = \sigma^2\mathbf{I}
\]
Now, let's derive the variance:
\[
\begin{aligned}
\text{Var}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'] \\
&= \mathbb{E}[((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon})((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon})'] \\
&= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}']\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\
&= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\sigma^2\mathbf{I})\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\
&= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\
&= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}
\end{aligned}
\]
Thus, under homoscedasticity, the variance of the OLS estimator is:
\[
\text{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}
\]
Part 2: Variance of OLS Estimator under Heteroscedasticity
Now, let's consider the case of heteroscedasticity, where the error variance is not constant across observations.
Under heteroscedasticity, we assume:
\[
\mathbb{E}[\boldsymbol{\varepsilon}] = \mathbf{0} \quad \text{and} \quad \mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'] = \boldsymbol{\Omega}
\]
where \(\boldsymbol{\Omega}\) is a diagonal matrix with \(\text{diag}(\boldsymbol{\Omega}) = (\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2)\).
Following the same derivation as before, but replacing \(\sigma^2\mathbf{I}\) with \(\boldsymbol{\Omega}\):
\[
\begin{aligned}
\text{Var}(\hat{\boldsymbol{\beta}}) &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}']\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\
&= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\Omega}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}
\end{aligned}
\]
This is the general form of the variance of the OLS estimator under heteroscedasticity.